skip to main content


Search for: All records

Creators/Authors contains: "Wagnon, Gigi S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ruiz-Rodriguez, Magdalena (Ed.)
    Some birds exhibit a maxillary overhang, in which the tip of the upper beak projects beyond the lower mandible and may curve downward. The overhang is thought to help control ectoparasites on the feathers. Little is known about the extent to which the maxillary overhang varies spatially or temporally within populations of the same species. The colonial cliff swallow ( Petrochelidon pyrrhonota ) has relatively recently shifted to almost exclusive use of artificial structures such as bridges and highway culverts for nesting and consequently has been exposed to higher levels of parasitism than on its ancestral cliff nesting sites. We examined whether increased ectoparasitism may have favored recent changes in the extent of the maxillary overhang. Using a specimen collection of cliff swallows from western Nebraska, USA, spanning 40 years and field data on live birds, we found that the extent of the maxillary overhang increased across years in a nonlinear way, peaking in the late 2000’s, and varied inversely with cliff swallow colony size for unknown reasons. The number of fleas on nestling cliff swallows declined in general over this period. Those birds with perceptible overhangs had fewer swallow bugs on the outside of their nest, but they did not have higher nesting success than birds with no overhangs. The intraspecific variation in the maxillary overhang in cliff swallows was partly consistent with it having a functional role in combatting ectoparasites. The temporal increase in the extent of the overhang may be a response by cliff swallows to their relatively recent increased exposure to parasitism. Our results demonstrate that this avian morphological trait can change rapidly over time. 
    more » « less
  2. null (Ed.)
    The cognitive-buffer hypothesis proposes that more harsh and unpredictable environments favour animals with larger brains and resulting greater cognitive skills. Comparisons across taxa have supported the hypothesis, but it has rarely been tested within a species. We measured brain size, as inferred from head dimensions, for 1141 cliff swallow specimens collected in western Nebraska, 1982–2018. Cliff swallows starving to death during unusual late-spring cold snaps had significantly smaller brains than those dying from other causes, suggesting that brain size in this species can affect foraging success and that greater cognitive ability may confer advantages when conditions exceed normal environmental extremes. Brain size declined significantly with the size of the breeding colony from which a specimen came. Larger brains may be favoured in smaller colonies that represent more unpredictable and more challenging social environments where there is less public information on food sources and less collective vigilance against predators, even in relatively normal conditions. Our results provide intraspecific support for the cognitive-buffer hypothesis and emphasize the potential evolutionary impact of rare climatic events. 
    more » « less